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Abstract

Large amounts of available training data and increasing
computing power have led to the recent success of deep con-
volutional neural networks (CNN) on a large number of ap-
plications. In this paper, we propose an effective semantic
pixel labelling using CNN features, hand-crafted features
and Conditional Random Fields (CRFs). Both CNN and
hand-crafted features are applied to dense image patches
to produce per-pixel class probabilities. The CRF infers a
labelling that smooths regions while respecting the edges
present in the imagery. The method is applied to the ISPRS
2D semantic labelling challenge dataset with competitive
classification accuracy.

1. Introduction
Automated annotation of urban areas from overhead

imagery plays an essential role in many photogrammetry
and remote sensing applications, e.g., environmental mod-
elling and monitoring, building and updating a geographi-
cal database, gathering of military intelligence, infrastruc-
ture planning, land cover and change detection. Pixel la-
belling of aerial photography is one of the most challeng-
ing and important problems in remote sensing. The objec-
tive of pixel labelling is to assign an object class to each
pixel in the given image. The task is challenging due to the
heterogeneous appearance and high intra-class variance of
objects such as building, streets, trees and cars. Although
many different algorithms have been proposed in the past
[18, 21, 22], the pixel labelling task cannot be considered
a solved problem. In this paper, we present a framework
to perform semantic pixel labelling and discuss its perfor-
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mance on the ISPRS 2D semantic labelling challenge data
set [1].

Semantic labelling is typically applied to multimedia im-
ages, and involves dense classification followed by smooth-
ing, for example with a probabilistic graphical model.
The traditional visual bag-of-words approach [25] extracts
hand-crafted features which are clustered to form visual
words, and boosting is used for classification. The success
of this method relies on the initial choice of features. More
recently, deep CNNs have been used to learn discrimina-
tive image features that are more effective than hand-crafted
ones. CNNs have been used for semantic labelling of street
scenes in [9].

In this paper we apply CNNs to the ISPRS 2D seman-
tic labelling contest for aerial imagery. We choose CNN
due to the following reasons. First CNN features can be ex-
tracted efficiently. We design our framework such that the
entire test image is forward propagated only once. Since
overhead images are typically very large, computational ef-
ficiency is a priority. Second, by augmenting the training
data with various transformations, the CNN representation
can be robust to both translation and rotation. Since imagery
could be captured at arbitrary azimuth, the feature repre-
sentation needs to be rotation-invariant. Complementary to
learned visual features, we make use of simple hand-crafted
features proposed in a previous submission to the labelling
challenge [11]. Combining both CNN features with simple
hand-crafted features further boosts the labelling accuracy
of our proposed approach.

As a post-processing step, a CRF is applied to the la-
bel probabilities. The CRF infers a globally-consistent la-
belling that is locally smooth except at edges in the imagery
and can improve fragmented and marginal regions. In pre-
vious work on the ISPRS challenge [11], super-pixel CRFs
were found not to increase accuracy. In our work we use
a pixel-level CRF to avoid errors in over-segmentation, and
find that both the accuracy and visual appeal of the labelling
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improve somewhat.
In this paper, we explore the possibilities of using a com-

bined approach for semantic labelling of overhead imagery:
learned features complemented by hand-crafted features.
Subsequent sections detail the two approaches, experiments
and our observations. We also demonstrate the utility of
combining both approaches.

2. Related work
Several researchers have applied machine learning in or-

der to annotate overhead imagery. During early days, dis-
crete class labels at a pixel were predicted using a vector
of features at each pixel[6, 2, 16, 3]. However, due to lack
of high-resolution imagery most of these techniques were
predominantly used for terrain classification, i.e. classify-
ing an overhead image into forest, water, agricultural land
etc. Over recent years, advances in digital photography have
made available large amounts of high resolution aerial im-
agery. With high resolution data there is now an opportunity
for fine-grained classification such as roads, buildings, and
objects such as cars and ships using sophisticated features
and machine learning algorithms[20, 21, 22].

Of late in computer vision, CNN features have been
shown to outperform traditional hand-crafted features in vi-
sual recognition challenges [14], image classification [23]
and object detection [12]. CNNs roughly mimic the na-
ture of the mammalian visual cortex and are among the
most promising architectures for vision applications. The
CNN architecture exploits the strong spatially local correla-
tion present in natural images by enforcing a local connec-
tivity pattern between neurons of adjacent layers. A deep
CNN consists of multiple layers of small neuron collections
which offer an alternative approach to learn visual patterns
directly from raw image pixels.

Recently Razavian et al. [23] have shown that train-
ing a linear SVM classifier on CNN feature representation
achieves superior results compared to highly tuned state-of-
the-art systems in all visual classification tasks on various
data sets [23]. Logistic regression is a widely used tech-
nique in statistics and has received a lot of attention due
to its close relations to other large margin classifiers, e.g.,
Support Vector Machine [26] and AdaBoost [10]. These
classifiers are well-studied and have been shown to achieve
good generalization capability in practice.

The combination of CNNs and CRFs has previously
been applied to semantic labelling. In [9] a multi-scale
CNN is applied to street scenes for dense classification, and
labelling using a CRF defined over super-pixels. Mnih and
Hinton learn discriminative image features using deep neu-
ral networks to detect roads and buildings from noisy la-
bels [19, 18]. Labels were post-processed using a CRF de-
fined over pixels.

Semantic labelling has been applied to aerial imagery

previously. [13] used super-pixel features and CRFs for
building detection in aerial imagery. A previous benchmark
for the ISPRS labelling challenge [11] used hand-crafted
texture and multi-spectral features for classification by Ad-
aBoost. Labelling was performed on super-pixels. They
found that post-processing with a CRF decreased accuracy
but de-speckled the output.

3. Approach

In this section, we introduce the framework for auto-
mated pixel classification in high-resolution aerial images.
We first introduce the neural networks adopted for dense
feature extraction. We then discuss how we complement
CNN features with hand-crafted features to further improve
the classification accuracy. Finally we briefly introduce the
concept of Conditional Random Fields (CRF) to smooth the
final pixel labeling results. An overview of the proposed se-
mantic pixel labeling framework is illustrated in Fig. 1.

3.1. Pixel classification with convolutional network

The convolutional feature classifier is applied densely
over the input image. The classifier has two components:
a CNN consisting only of convolutional layers, and a logis-
tic regression classifier that takes convolutional features as
input and outputs class probabilities. The convolutional fea-
tures are learned by supervised training of a CNN classifier
(described next), and discarding the fully-connected layers
of the network leaving only the convolutional layers.

CNN Training for Feature Learning In this paper, we
train a CNN by adopting the approach of [14], i.e., the CNN
network consists of several convolutional layers, which
are placed alternatively between contrast normalization and
max-pooling layers. Each convolutional layer computes the
convolutions between the input and a set of filters. The ac-
tivation function (rectified linear unit - ReLU) perform a
non-linear transformation while the max-pooling layer sub-
samples the output of the convolutional layer. These two
operations improve the robustness of the network to dis-
tortions and small translations [14]. The output of the last
fully-connected layer is fed to a k-way soft-max layer which
produces a distribution over k class labels. All network pa-
rameters are learned in a supervised manner.

Dense neural pattern training We follow the work of
Razavian et al. by applying a multi-class classifier on the
CNN feature representation [23]. We consider the multi-
class classification problem as a set of binary classification
problems. We adopt a simple logistic regression with a
‘one-versus-all’ scheme as it has been shown to be as ac-
curate as any other multi-class algorithms despite its sim-
plicity [24]. The logistic regression solves the following
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Figure 1: An overview of the proposed pixels labeling framework.

optimization problem,

min
wr

m∑
i=1

log
(
1 + exp(−yiw>rxi)

)
, (1)

where wr is the weight vector we are trying to learn. Here
we assume that {(xi, yi)}mi=1 is the set of training data,
xi ∈ Rd represents vectorized CNN features, yi = 1 if the
class label of xi is the same as r and yi = −1, otherwise.
m is the number of training samples, d is the dimension of
feature vector xi and r ∈ {1, 2, · · · , 5}, which corresponds
to the class labels Impervious surfaces, Building, Low veg-
etation, Tree and Car respectively. In order to avoid over-
fitting, we introduce `2-norm regularization on the weight
vector wr. Given a test sample xt and the learned weight
vectors {w1, · · · ,w5}, the probability that xt belongs to
class r is given by,

P (yt = r) =
1

Z

(
1

1 + exp(−w>rxt)

)
, (2)

where Z =
∑5

r=1
1

1+exp(−w>
rxt)

. The purpose of Z is to
ensure that the resulting distribution is a probability distri-
bution.

Multi-resolution CNN In order to correctly classify both
coarse-scale and fine-scale details in the image, we train
several CNN models with different input image resolutions.
Each CNN model encodes different patches of increasing
sizes, covering a larger context surrounding the centre pixel.
The output is a series of feature vectors generated from
patches of multiple sizes centred at each pixel (see Fig. 2).
A similar concept has also been applied in [8, 9], in which
the authors demonstrate that a multi-scale ConvNet out-
performs a single-scale ConvNet for scene parsing.

Implementation We train the CNN with a combination of
input data: orthophoto, Digital Surface Model (DSM) im-
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Figure 2: An overview of the multi-resolution CNN.

age and normalized DSM image. We train three CNN mod-
els with three different input image resolutions: 16 × 16,
32× 32 and 64× 64 pixels. The parameter settings used in
our CNN model for 64×64 pixel input images are explained
below. The first convolutional layer filters the 64×64×5 in-
put image which consists of orthophotos, DSM images and
normalized DSM images with 32 kernels of size 5 × 5 × 5
with a stride of 1 pixel. The second convolutional layer
takes as input the output of the first convolutional layer and
filters it with 64 kernels of size 5 × 5 × 32. The third con-
volutional layer has 96 kernels of size 5× 5× 64 connected
to the output of the second convolutional layer. The fourth
convolutional layer has 128 kernels of size 3× 3× 96. The
fully connected (fc) layers have 128 neurons each. We ap-
ply the dropout term in both fully connected layers. The
dropout term set the output of each hidden neuron to zero
with probability of 0.5. We train CNN with stochastic gra-
dient descent at a learning rate of 0.001. The learning rate
is reduced by a factor of ten at every 20 epochs. We set
the momentum to 0.9 and the weight decay parameters to
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Figure 3: An illustration of the CNN architecture. In this figure, the networks input is the 64 × 64 × 3-pixels orthophoto,
64 × 64-pixels DSM input image and 64 × 64-pixels normalized DSM image. The networks consist of six layers (four
convolutional layers and two fully-connected layers) with a final 5-way soft-max layer.

0.0005. An illustration of the CNN structure is shown in
Fig. 3.

To train the CNN model for 16× 16 and 32× 32 pixels
input images, we simply replace the input image to the first
convolutional layer from 64 × 64 × 5 to 16 × 16 × 5 and
32 × 32 × 5, respectively. All other parameter settings are
kept the same as before. In this paper, we implement the
network training based on the MatConvNet CNN toolbox1.
Training is done on a standard desktop with an NVIDIA
GTX 780 GPU with 6 GB memory. We randomly extract
7500 patches from each class. The time to train the CNN
model is under two hours. For `2-regularized logistic re-
gression we use LIBLINEAR [7].

Dense neural pattern classification The output of each
convolution kernel is a dense feature map of neural pat-
terns over the entire image. By carefully designing the CNN
structure, we can compute the location of each neural pat-
tern from a patch and map it back to coordinates on the orig-
inal image [27]. Given the test image and the trained CNN
model, we extract the dense CNN feature map from the out-
put of the last convolutional layer. We vectorize CNN fea-
tures within each input image patch, concatenate them into
a single feature vector and apply logistic regression weights
to classify object of different classes. To evaluate the entire
test image, we adopt a scanning window approach with a
step size of 4 pixels. Since we forward propagate the entire
test image through the CNN structure only once, we sig-
nificantly speed up the CNN feature extraction time during
evaluation. In addition, since the only class-specific com-
putation is the dot product between extracted CNN features
and logistic regression weights, our approach can scale to
hundreds of object classes.

3.2. Classification using Hand-Crafted Features

In [11], several pixel-level features were found to be ef-
fective for discriminating the classes in the labeling contest.
Since these are complementary to the texture-based features
extracted by the CNN, a separate random forest (RF) classi-
fier is trained on hand-crafted features and the output prob-

1http://www.vlfeat.org/matconvnet

abilities combined with those generated by the CNN. For
each pixel in the imagery, a vector of 7 features is gen-
erated: NDVI, saturation and normalised DSM (see [11]),
NIR+R+G

3 , the 3-channel maximum to indicate shadows,
entropy and kurtosis of l2 normalised histogram of normals
gathered over a 16× 16 neighbourhood from the DSM and
normalised DSM. Histogram of normals is a collation of an-
gles of point normals into 2D histogram bins i.e. elevation
and azimuth.

537000 training examples are chosen at random and used
along with the corresponding ground truth pixel labels to
train a random forest classifier with 100 trees. The Car class
is excluded from this classifier since the features are not
discriminative for cars.

Since the CNN and RF are such different approaches,
we assume they are independent given the data and multiply
their class probabilities to result in the combined probability
for each class:

pcombo
i =

pcnn
i prf

i∑C
j=1 p

cnn
j prf

j

(3)

where pcombo, pcnn and prf are the combined, CNN and ran-
dom forest probabilities per class. For the Car class the
combined probabilities come from the CNN only.

3.3. CRF Labelling

A conditional random field (CRF) is a probabilistic
graphical model that has been used extensively for semantic
labelling of images, for examples see [25, 9]. CRFs are of-
ten defined at the super-pixel level rather than the pixel level
to improve computational efficiency and robustness [13].
As pointed out in [11], this places an upper limit on the
achievable accuracy due to over-segmentation errors (i.e.
super-pixels that cover multiple objects). Therefore we use
a pixel-level CRF: a 4-connected grid in which each node
corresponds to the class label of an image pixel.

Following the standard definition of image labelling
CRFs, the energy function consists of unary and pairwise
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cost terms:

E =
∑
i∈V

Φ(ci,x) +
∑
i,j∈E

Ψ(ci, cj ,x) (4)

where V and E are the nodes and edges of the CRF graph, ci
is the class label of node i and x represents the given data.
The unary cost is based on the class probability from the
combined CNN and RF classifiers:

Φ(ci,x) = − log pcombo
ci (5)

The pairwise costs use a contrast-sensitive Potts model to
penalise class boundaries with low contrast. However the
traditional method comparing the neighbouring pixel inten-
sities is problematic due to low contrast edges in the image.
Instead, pairwise costs are based on a binary edge image
such that class boundaries are encouraged to line up with
the edges. This provides the CRF with stronger information
about class boundaries than the weak image contrast infor-
mation. Suppose we have a binary edge image G(i) that
is true if pixel i is an edge pixel and false otherwise. De-
fine B(i, j) as an indicator that pixel i and its 4-connected
neighbour j straddle an edge:

B(i, j) =

 1 if G(i) and ¬G(j) and
(x(j) > x(i) or y(j) > y(i))

0 otherwise
(6)

where x(i) and y(i) are the image column and row of pixel
i. This asymmetric definition stops edge pixels from being
segmented as regions.

The pairwise cost is defined as:

Ψ(ci, cj ,x) =

{
K(1−B(i, j)) if c(i) 6= c(j)
0 otherwise (7)

where K is a constant penalty term. In our eperiments the
value of K = 25 is chosen to minimise the validation set
error. The Canny edge detector is used to form the robust
edge imageG(i); hysteresis thresholding fills in weak edges
connecting strong ones, and discards isolated weak edges.
Since the Canny image edges are sometimes absent or in-
complete, a combined edge map is used. Canny edges are
computed separately for the (greyscale) orthophoto, DSM
and NDVI, and the three image sets are superimposed to
formG(i). Figure 4 shows the complementary nature of the
three sets of edges: image edges are accurate but unreliable,
DSM edges are more reliable but less accurate, and NDVI
edges can delineate vegetation well regardless of elevation.

An approximation to the MAP labelling is inferred using
α − β swaps [5]. This method solves the n-labelling prob-
lem by iteratively solving for the simpler binary case. The
maxflow algorithm of [4] is used for binary labelling, which
performs exact inference in polynomial time. The CRF was
implemented in python and C++2.

2http://github.com/RockStarCoders/
alienMarkovNetworks

4. Experiments

The proposed method was applied to the ISPRS la-
belling contest dataset[1]. The dataset consists of 33 large
image patches of different sizes, each being a true or-
thophoto(TOP) extracted from a larger TOP image captured
over Vaihingen, Germany. In total there are over 168 mil-
lion pixels. The dataset also contains corresponding Digital
Surface Models(DSM) for each patch. The patches have
a ground sampling distance of 9 cm and the DSMs were
generated via dense image matching. Labelled ground truth
was provided for 16 of the areas, and were made up of 6
categories: Impervious surfaces, Building, Low vegetation,
Tree, Car and Clutter/background. Normalised DSMs was
provided to us at a later date, and were generated using the
lasground tool3 where the normalized height is computed
based on the off-ground pixels. The effect of terrain or
ground is nullified in normalised DSM compared to the reg-
ular DSM. Guidelines for evaluation procedure and metrics
are defined by the ISPRS[1].

We investigate the experimental design of our approach.
We split the labelled training images into training and val-
idation sets. The training set consists of 11 areas (1, 3, 5,
7, 13, 17, 21, 23, 26, 32, 37) and the validation set consists
of 5 areas (11, 15, 28, 30 and 40). The evaluation is based
on the computation of pixel-based confusion matrices. For
each class, we report the harmonic mean of precision and re-
call (F1-score). We also report the overall accuracy (Overall
Acc.), which is the normalized trace from the confusion ma-
trix (i.e. percentage of pixels correctly labelled). As per the
ISPRS metrics, pixels near ground truth class boundaries
are excluded by eroding the labels with a 5× 5 diamond.

Input data In this experiment, we compare the CNN per-
formance with and without the DSM model. All experimen-
tal settings are kept identical, except the number of channels
of convolutional kernels in the first layer. For orthophotos,
the filter size in the first layer is set to 5 × 5 × 3 × 32.
For orthophotos + DSM, the filter size in the first layer is
set to 5 × 5 × 4 × 32. We conduct experiments with both
raw DSM and the normalized DSM. Table 1 compares the
average F1-score and overall accuracy of the CNN given
different input data. We observe that it is beneficial to use
the normalize height information as it improves the overall
accuracy by 3.3%. Not surprisingly, we observe that the
normalized height feature has less impact on the detection
rate of car-pixels (53.5% versus 54.6%). A similar find-
ing has also been reported in [11]. In our experiment, we
achieve the highest accuracy when we combine orthophoto
with the raw DSM and the normalized DSM (an improve-
ment of 5.2% on overall accuracy).

3http://rapidlasso.com
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Figure 4: Example of edges used in CRF pairwise cost.

Imp. surf. Building Low veg. Tree Car Average F1 Overall Acc.
Ortho 82.91% 88.13% 67.14% 81.77% 53.50% 74.69% 80.10%
Ortho + DSM 82.93% 88.75% 68.40% 82.44% 51.15% 74.74% 80.71%
Ortho + NDSM 86.07% 92.79% 72.85% 82.85% 54.63% 77.84% 83.46%
Ortho + DSM + NDSM 87.35% 93.34% 74.96% 84.97% 63.32% 80.79% 85.18%

Table 1: Performance comparison of the CNN with different input data sources (Ortho - Orthophoto, DSM - Raw Digital
Surface Model and NDSM - Normalized DSM). Experiments are evaluated on the validation set (area 11, 15, 28, 30 and 40).
All quality measures except for ‘Overall Acc.’ are F1-scores using the ground-truth with eroded boundaries. The best overall
accuracy is shown in boldface.

Input image CNN Feature Window Total time
(pixels) extraction scanning (sec.)
single-res. 9.8 57.3 67.1
2 × single-res. 18.8 115.4 134.2
3 × single-res. 28.0 171.8 199.8

Table 3: Average evaluation time per image (on the val-
idation set: area 11, 15, 28, 30 and 40) between single-
resolution and multi-resolution CNNs.

Multi-resolution CNN feature extraction We employ a
multi-resolution deep network that predicts an output based
on the 16×16, 32×32 and 64×64 pixel image area. Exper-
imental results are reported in Table 2. For our baseline, we
trained a single-resolution network. Table 2 shows an im-
provement of multi-resolution CNN over a single-resolution
CNN based on the average F1-score and overall accuracy.
We also report the evaluation time in Table 3. All com-
putations were performed using a single core of an Intel
Xeon E5-2680 with 2.70GHz. Both CNN feature extraction
and scanning window codes are implemented in MATLAB
as standard MATLAB external calls (MEX-files). Based on
Table 2 and 3, we can conclude that the performance gain
of multi-resolution CNN is achieved at the cost of increased
computation complexity.

Hand-crafted Features and RF Classifier The accuracy
of the random forest classifier on the validation set of im-
ages is shown in Table 4. The best CNN-only result is in-
cluded there for convenience. The accuracy is surprisingly

high considering the relative simplicity of the hand-crafted
features, each using input values from only a single pixel.
Table 4 also shows the accuracy of the combined proba-
bilities when used to label the pixels. The overall accu-
racy improves on the CNN by about 1%, indicating that the
hand-crafted features do indeed contain information that is
independent from the CNN features.

Conditional Random Field The CRF is applied to the
combined CNN and RF probabilities. Inference takes about
1 minute per image on a single CPU. The validation set
accuracy is shown in Table 4. Whereas the average pixel
accuracy increased only a fraction of a percent, the aver-
age F1-score is about 1% higher, the biggest impact being
made to the Car class. The accuracy is not greatly improved
by the CRF, but the aesthetic appeal of the labelling ar-
guably makes it worthwhile. Examples of the effect of CRF
smoothing are shown in Figure 5. The main improvements
of the CRF are to change the label of regions with ambigu-
ous probabilities, and to remove small mislabelled regions.
On the downside, CRF smoothing can sometimes remove
small or thin regions.

ISPRS Challenge Test Results The results on the unla-
belled test images were submitted to the ISPRS for evalua-
tion. Our results for the 2D labelling challenge are shown in
Table 5 for CNN only, combined CNN and RF probabilities,
and combined probabilities post-processed with the CRF. In
comparison to Table 4 the accuracy is higher than on the
validation set, particularly for low vegetation and trees.



Input image resolution (pixels) Imp. surf. Building Low veg. Tree Car Average F1 Overall Acc.
16× 16 84.70% 92.15% 72.54% 83.51% 42.54% 75.09% 82.78%
32× 32 85.96% 92.42% 74.09% 84.68% 61.06% 79.64% 84.20%
64× 64 87.35% 93.34% 74.96% 84.97% 63.32% 80.79% 85.18%
ALL 87.72% 93.27% 75.53% 85.29% 66.89% 81.74% 85.56%

Table 2: Performance comparison between single-resolution and multi-resolution CNNs. ALL - We extract CNN features
from three different resolutions: 16× 16, 32× 32 and 64× 64 pixels.

Imp. surf. Building Low veg. Tree Car Overall F1 Overall Acc.
Multi-res CNN 87.72% 93.27% 75.53% 85.29% 66.89% 81.74% 85.56%
Random forest 85.83% 92.79% 70.88% 83.98% 0.0% 66.69% 83.47%
CNN+RF 88.58% 94.23% 76.58% 86.29% 67.58% 82.65% 86.52%
CNN+RF+CRF 89.10% 94.30% 77.36% 86.25% 71.91% 83.78% 86.89%

Table 4: Accuracy of RF classifier and CRF labelling on the validation set.

5. Discussion

As was also highlighted in [9] for street scenes, this work
demonstrates that CNNs can effectively perform dense se-
mantic labelling of aerial imagery. The features are learned
directly from the data rather than being hand-crafted. In
contrast to the sophistication and computational cost of
the CNN approach, simple pixel-level hand-crafted features
achieved almost the same accuracy. Perhaps this is not sur-
prising because the input data are designed to discriminate
the target classes: the DSM highlights houses and trees, and
infrared highlights vegetation. In single-channel panchro-
matic images these phenomenologies cannot be relied upon,
and the CNN’s texture-based approach would be much more
accurate.

In [11] it was found that CRF smoothing had a negative
effect on accuracy, whereas in our work the accuracy im-
proved. This is most likely because our CRF is defined
at the pixel level rather than on super-pixels as in [11].
Along with [11] we conclude that the CRF improves the
labelling visually, for example by removing speckle from
classifier output labels. Since the CNN is applied with a
sliding window, it does not have access to object-level con-
text during classification. CRFs could provide object-level
constraints using higher-order cliques or a hierarchical ap-
proach, for example to constrain edges of buildings to be
straight lines. Labelling of cars could be improved by a
rotation-invariant car detector [17]. CRFs provide a proba-
bilistic framework for combining these detections with the
classifier labelling [15].

We would like to mention here that the ground-truth pro-
vided contains ambiguities, e.g., tree and low vegetation can
sometimes be mislabelled. We illustrate some of these mis-
labelled ground-truths in Fig. 6.
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